🚀 Why DeepSeek R1 Stands Out
- Free & Open Source: No subscription fees (Live Demo)
- Performance Leader: Beats GPT-4/Claude 3.5 in coding & math
- Hardware Flexible: From 1.5B (basic PCs) to 70B (workstation) models
💡 Before You Start
- RAM Calculator: Use LLM Calc
- Low-end PC? Choose 1.5B or quantized models
- Privacy First: Local operation = zero data leaks
🖥️ Model Selector Guide
1.5B Model (Entry-Level)
- RAM: 4GB
- GPU: Integrated/Mobile
- Use Case: Simple code completion
7B Model (Recommended)
- RAM: 8-10GB
- GPU: GTX 1660+
- Use Case: Full-stack development
70B Model (Power User)
- RAM: 40GB+
- GPU: RTX 3090+
- Use Case: Complex algorithms
🔧 Installation Methods
Option 1: LM Studio (Beginner-Friendly)
- Download from lmstudio.ai
- Search → "DeepSeek R1" → Download GGUF/MLX version
- Start server at
localhost:1234
Option 2: Ollama (Terminal Pros)
- Install via ollama.com
- Run:
ollama pull deepseek-r1:7b
- Start with
ollama serve
→localhost:11434
Option 3: Jan (Hugging Face Users)
- Get Jan Client
- Search Hugging Face for "unsloth/DeepSeek-R1-GGUF"
- Import → Load → Auto-starts at
localhost:1337
⚙️ VS Code Integration
- Install Cline or Roo Code
- Configure:
- LM Studio/Jan:
http://localhost:1234
- Ollama:
http://localhost:11434
- LM Studio/Jan:
- Test with code comment:
// Generate Python quicksort function
🎁 Pro Tips
- Use
--gpu-layers 30
flag in Ollama for better GPU utilization - Enable "Auto-Trigger" in Cline for real-time suggestions
- Combine with Tabnine for hybrid AI coding
👉 Official Docs: DeepSeek Documentation